Sensitization of pain-modulating neurons in the rostral ventromedial medulla after peripheral nerve injury.
نویسندگان
چکیده
Nerve injury can lead to mechanical hypersensitivity in both humans and animal models, such that innocuous touch produces pain. Recent functional studies have demonstrated a critical role for descending pain-facilitating influences from the rostral ventromedial medulla (RVM) in neuropathic pain, but the underlying mechanisms and properties of the relevant neurons within the RVM are essentially unknown. We therefore characterized mechanical responsiveness of physiologically characterized neurons in the RVM after spinal nerve ligation, a model of neuropathic pain that produces robust mechanical hyperalgesia and allodynia. RVM neurons were studied 7-14 d after spinal nerve ligation, and classified as "on-cells," "off-cells," or "neutral cells" using standard criteria of changes in firing associated with heat-evoked reflexes. On-cells are known to promote nociception, and off-cells to suppress nociception, whereas the role of neutral cells in pain modulation remains an open question. Neuronal and behavioral responses to innocuous and noxious mechanical stimulation were tested using calibrated von Frey filaments (4-100 g) applied to the hindpaws ipsilateral and contralateral to the injury, and in sham-operated and unoperated control animals. On- and off-cells recorded in nerve-injured animals exhibited novel responses to innocuous mechanical stimulation, and enhanced responses to noxious mechanical stimulation. Neuronal hypersensitivity in the RVM was correlated with behavioral hypersensitivity. Neutral cells remained unresponsive to cutaneous stimulation after nerve injury. These data demonstrate that both on- and off-cells in the RVM are sensitized to innocuous and noxious mechanical stimuli after nerve injury. This sensitization likely contributes to allodynia and hyperalgesia of neuropathic pain states.
منابع مشابه
Permanent lesion in rostral ventromedial medulla potentiates swim stress-induced analgesia in formalin test
Objective(s): There are many reports about the role of rostral ventromedial medulla (RVM) in modulating stress-induced analgesia (SIA). In the previous study we demonstrated that temporal inactivation of RVM by lidocaine potentiated stress-induced analgesia. In this study, we investigated the effect of permanent lesion of the RVM on SIA by using formalin test as a model of acute inflammatory pa...
متن کاملTransition to persistent orofacial pain after nerve injury involves supraspinal serotonin mechanisms.
The orofacial region is a major focus of chronic neuropathic pain conditions characterized by primary hyperalgesia at the site of injury and secondary hyperalgesia outside the injured zone. We have used a rat model of injury to the maxillary branch (V2) of the trigeminal nerve to produce constant and long-lasting primary hyperalgesia in the V2 territory and secondary hyperalgesia in territories...
متن کاملActivation of the Mammalian Target of Rapamycin in the Rostral Ventromedial Medulla Contributes to the Maintenance of Nerve Injury-Induced Neuropathic Pain in Rat
The mammalian target of rapamycin (mTOR), a serine-threonine protein kinase, integrates extracellular signals, thereby modulating several physiological and pathological processes, including pain. Previous studies have suggested that rapamycin (an mTOR inhibitor) can attenuate nociceptive behaviors in many pain models, most likely at the spinal cord level. However, the mechanisms of mTOR at the ...
متن کاملEffect of transient inactivation of rostral ventromedial medulla on swim stress induced analgesia in formalin test in rats
Introduction: Despite significant progress in understanding pain control mechanism, there are numerous questions about central nervous mechanisms underlying stress-induced analgesia. The rostral ventromedial medulla (RVM) in the brainstem integrates a variety of functions, including pain modulation and pain perception. In the present study, we investigated the effect of temporary inactivatio...
متن کاملAdministration of orexin receptor 1 antagonist into the rostral ventromedial medulla increased swim stress-induced antinociception in rat
Objective(s): Intracerebroventricular injection of orexin-A (hypocretin-1) antagonist has been shown to inhibit stress-induced analgesia. However the locations of central sites that may mediate these effects have not been totally demonstrated. This study was performed to investigate the role of rostral ventromedial medulla (RVM) orexin receptor 1 in stress-induced analgesia (SIA). Materials and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 48 شماره
صفحات -
تاریخ انتشار 2007